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ABSTRACT
Cost control has become an important issue in hospital manage-
ment. As a very important part of a hospital, the operating room
consumes a great amount of resources. If operating rooms are put
to their optimal use, a large amount could be saved. However, high
uncertainty in the duration of operation procedures results in the
difficulty in scheduling the use of operating rooms. The operating
room use duration is related to the duration of surgery, and this is
difficult to predict. In this study, we used artificial neural network
(ANN) to construct a surgery duration prediction model. Experi-
mental results show that the prediction accuracy of the prediction
model is acceptable.
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1 INTRODUCTION
In recent years, cost saving has become an increasingly important
issue for hospitals. The operation room is the core department of a
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hospital [1]. In some hospitals, the laminar flow operation center
consists of several operation rooms. In this center, in the same time
interval, the energy consumption cost of using three operating
rooms is almost the same as that of using only one operating room.
However, the energy consumption cost of using one operating room
for three hours is three times that of using three operating rooms
for one hour. Therefore, there is no doubt that a balanced opera-
tion rooms scheduling can save the cost. However, performing a
balanced operation room schedule is difficult, mostly due to high
uncertainty of operating room use duration [2]. If the operating
room scheduling sets aside less time for an operation than the real-
ized duration, the next operation will not start on time. However, if
the planned operation duration is longer than the realized duration,
the operating room will have to remain vacant, which may cause
a waste of operating room resources. In contrast, if the operating
room scheduling is reasonably arranged, it will reduce the resource
consumption caused by the difference between the estimated time
and the actual time required to occupy the operating room.

Operating room managers generally schedule the operation
rooms by manually predicting the duration of the surgery and
the anesthesia emergence. The surgery duration implies the time
from the beginning of the surgery to the end of the surgery. The
anesthesia emergence duration indicates the time from the end of
the surgery to the time when a patient wakes up. Operating room
managers schedule operation rooms based on the average dura-
tion of previous similar procedures (prior experience) or a rough
estimate of operating room time based on the type of surgery, char-
acteristics, and so on [3]. However, this prediction approach is a
relatively rough and unscientific estimation of a large range, which
often leads to large errors in the duration of operation and anes-
thesia emergence and causes resource wastage in the operating
room. In few existing studies, scholars selected a few factors and
used a simple multiple regression method to predict the duration of
certain types of operations [4], which also has certain limitations.

In recent years, many artificial intelligence methods have been
developed and applied to many prediction problems with good
prediction performance. For example, the artificial neural network
(ANN) has been used to solve the ship detection problem [5] and
predict the recidivism rate of commuted prisoners [6]. The support
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vector machine (SVM) has been used to solve the reclaim wafer
defect classification problem [7]. The association rule (AR) has
been used to solve the driver lane-keeping ability in fog problem
[8]. Among these methods, the ANN has been used to solve several
types of prediction problems and could derive a better accuracy
than SVM in supervised learning [7, 9]. Therefore, in this study,
to predict the operating room duration more accurately for more
efficient operating room scheduling, we used ANN to construct
the prediction system for the duration of surgery. According to
the experimental results, the prediction accuracy of the surgery
duration prediction system was 94.85%, which is acceptable.
The remainder of this paper is organized as follows. Section 2 in-
troduces the ANN, perceptron, and multilayer perceptron (MLP).
Section 3 describes the conducted experiments. Section 4 discusses
the experimental results of the surgery duration prediction sys-
tem. Finally, conclusions and suggestions for future research are
provided in Section 5.

2 LITERATURE REVIEW
2.1 Artificial Neural Network
An ANN is a complex artificial system, its mathematical model is
similar to the function, structure and information processing of
human brain and nervous system [10]. Similar to human brain,
the ANN is a self-learning system, which can learn the predicted
output by performing multiple iterations. All types of nodes of
neural network are similar to neurons in human brain, and each
neuron is used as the input of the next node after the weighting
function [11]. In the learning process, a systematic algorithm is used
to update the weights. In order to obtain better output accuracy,
the backpropagation (BP) learning algorithm is usually used in the
ANN; this algorithm refers to using a certain set of weights and
biases to perform an iteration and calculating the error with the
output and actual value, then propagating backwards, and updating
the weights and bias by the error to ensure that, after several such
forward and backward propagations, the output accuracy is quite
high and reliable [12]. After the training of ANN is complete, we
can predict or classify new data according to the received stimulus
(new input data), weights and biases.

The ANN is a powerful tool for learning and modeling complex
linear or nonlinear relationships. More precisely, the model it builds
is similar to a "black box": we cannot understand the nature of the
relationship between input and output data [13]. The ANN has been
widely used by many researchers to solve a series of problems in
many fields, including engineering [14], biology [15], mathematics
[16], and analysis and prediction of various diseases in medicine
[17].

2.2 Perceptron
The perceptron model is derived from MP model established by
McCulloch and Pitts [18]. MP model describes the mathematical
principle and network structure of artificial neuron by simulating
the principle and process of neural cells in biology, and proves that
a single neuron can realize a logic function. In detail, the MP model
includes input, output, and calculation functions. Between them,
the input and output are similar to dendrites and axons of neurons

respectively, while the calculation function is similar to nucleus,
and each synapse has its own weight.

Inspired by the MP model, the perceptron model consists of
two layers. The first layer is called input layer, which receives
the stimuli and transmits them to the last layer. The last layer
is called output layer. In the output layer, all input stimuli are
multiplied by their respective weights, and then the perceptron
adds all weighted stimuli and bias through the summation function.
Finally, the perceptron uses the activation function to simulate the
process of data processing by the brain [19].

2.3 Multilayer Perceptron
To deal with nonlinear problems better, Hecht-Nielsen proposed
a multilayer perceptron, in which one or more additional neuron
layers are placed between the input layer and the output layer [19].
There are two basic components in the structure of MLP: neurons
and the links between them. The neurons are the processing el-
ements and the links are the interconnections. Each link has its
own weight parameter or bias parameter. When a neuron receives
stimuli from other neurons through the links, it processes the in-
formation and produces an output signal. In addition, consider that
these intermediate layers are not disturbed by the external envi-
ronment, they are called hidden layers, and their nodes are called
hidden nodes. Similar to the perceptron, the input neurons receive
external stimuli, and the output neurons transmit the output signals.
Using similar neuronal dynamics, the hidden neurons receive the
stimuli from the neurons at the front of the network and transmit
the output signals to the neurons at the back of the network [6].

3 EXPERIMENTS
3.1 Data Setting
The investigation samples were provided by Affiliated Hospital of
Panzhihua University. These samples are the operation records for
a period of nearly one and a half years, from January 2019 and July
2020. The data are merely used for academic study that predict the
duration of surgery. To protect personal privacy, the samples were
preprocessed. The total number of samples collected for this study
was 15,754. The samples for patients who suffered from hepatic and
renal disease were excluded. All samples for emergency surgery
patients or patients who are admitted to ICU after surgery were
excluded to eliminate the potential factors that could affect the
operation time. Thus, only records for patients with complete case
data were included in the study. There are 24 input variables of
the surgery duration prediction system, which are gender, body
mass index (BMI), systolic blood pressure (SBP), diastolic blood
pressure (DBP), pulse rate (PR), respiration rate (RR), body tempera-
ture, heart function classification, red blood cell (RBC), hemoglobin
(HB), hematocrit (HCT), platelet (PLT), potassium (K), sodium (NA),
chlorine (CL), activated partial thromboplastic time (APTT), pro-
thrombin time (PT), thrombin time (TT), American society of anes-
thesiologists (ASA) classification, anesthesia type, surgeon title,
seniority of surgeon, age of surgeon, and surgical grade. The output
variable of the surgery duration prediction system is the duration
of surgery. As shown in Table 1, the duration of surgery is divided
into four scales: no more than 1 hour, 1–2 hours, 2–3 hours, and
3–4 hours.
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Table 1: Output Variable of the Surgery Duration Prediction System

Variables Name Description
Output
(original)

Duration of surgery (T ) (1) ≤ 1 hour
(2) 1-2 hours
(3) 2-3 hours
(4) 3-4 hours

Output
(statistical)

Duration of surgery (T ) (1) 1000
(2) 0100
(3) 0010
(4) 0001

Appropriate data preprocessing is extremely important for a
successful ANN. Hence, data transformation [20] and inspection,
and deletion of outliers [21] were applied to preprocess all the data
in this study. After data preprocessing, a total of 6,507 surgery sam-
ples were retrospectively used to predict the duration of surgery. In
addition, normalizing the data is recommended to avoid premature
saturation that prevents the learning process [22], and all the data
were normalized between 0.1 and 0.9. Meanwhile, balancing and
enrichment of data plays an important role in classification prob-
lems [23]. Therefore, data balancing was used in this study. After
data balancing, the data were mostly enhanced to three times in
beginning experiments and ten times in the final experiment. More-
over, data representation is a necessary part of a successful ANN
[21]. In this study, the output variable was categorized according
to four binary numbers, namely, 1000, 0100, 0010, and 0001, where
the location of 1 represents the category.

3.2 Computing Environment Settings
We used Python 3.7 (64 bit) as the compiler to write the program to
find a solution. The devices included an Intel Core (TM) i7-10510U
(2.3 GHz) CPU, 8GB of memory, and a Windows 10 Home Edition
(64 bit) operating system.

3.3 Experimental Structure
In this study, we used MLP to construct the surgery duration pre-
diction model. To determine the optimal architecture of the model,
we conducted one group of experiments, and the total dataset was
divided into three datasets, namely, training, testing, and validation,
according to the respective proportion of 60%, 20%, and 20% [23].

In MLP, the Adam optimizer was used to adjust the weights, and
the cross-entropy loss function was used to calculate the loss of the
prediction model. The batch size was set to 100, and the number
of training cycles was set to 200, but 1,000 in the final experiment
of the optimal architecture. The number of hidden layers and the
number of hidden nodes in each layer are crucial to the results
of the experiment [19, 23]. We used the trial-and-error method to
identify the suitable number of hidden layers and hidden nodes.
Among them, the number of hidden layers was set to 3, 4, 5, and 6,
respectively, and the number of hidden layer nodes of each layer
was set to 64, 128, 256, and 512, respectively. Thus, the experimental
results of 16 parameter combinations were obtained for comparison
and analysis. To reduce the stochastic effects of the experiments,
we conducted 10 experiments for each parameter combination.

Figure 1: MLP Structure to Predict Duration of Surgery.

Finally, we obtained the optimal architecture of the surgery duration
prediction model. Figures 1 shows the MLP structure of the surgery
duration prediction model.

4 EXPERIMENTS AND ANALYSIS
We used the trial-and-error method to identify the final architec-
ture of the surgery duration prediction model. The experimental
results are shown in Tables 2-6. Tables 2-4 present the prediction
accuracy of the surgery duration prediction model in the testing,
training, and validation datasets, respectively. In addition, to further
explore the performance of several different architectures of MLP,
the experiment results were analyzed through the t-test, as shown
in Table 5. Table 6 presents the running time cost of each architec-
ture. We determined the final architecture of MLP according to the
maximum prediction accuracy and the reasonable running time
cost.

In Tables 2-4, Mean and Std imply the average prediction accu-
racy and the standard deviation of 10 experiments, respectively.
Max indicates the maximum prediction accuracy during 10 exper-
iments, and Min is the minimum prediction accuracy during 10
experiments. Here, 3-64 denotes the MLP model with 3 hidden lay-
ers and 64 hidden neurons in each hidden layer. In the three hidden
layer architecture, in Table 2, the 3-512 architecture has the max-
imum average prediction accuracy (0.7254) in the testing dataset.
The maximum and minimum prediction accuracies of the 3-512
architecture (0.7491 and 0.7108, respectively) are higher than other
architecture. These results mean that in the testing dataset, the
3-512 architecture has the better prediction performance. However,
in Table 3, we notice that the 3-256 and 3-512 architectures have
the same maximum average prediction accuracy (0.7996) in the
training dataset. In Table 4, we notice that the 3-256 architecture
has a better average prediction accuracy (0.7266) than the 3-512
architecture (0.7261) in the validation dataset. Moreover, in Table
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Table 2: The Prediction Accuracy of the Surgery Duration
Prediction System in the Testing Dataset

Layers-
Neurons

Mean Std Max Min

3-64 0.6013 0.0127 0.6173 0.5737
3-128 0.6830 0.0174 0.6991 0.6374
3-256 0.7252 0.0131 0.7418 0.7056
3-512 0.7254 0.0131 0.7491 0.7108
4-64 0.6506 0.0124 0.6655 0.6260
4-128 0.7340 0.0118 0.7498 0.7078
4-256 0.7711 0.0115 0.7919 0.7560
4-512 0.7639 0.0156 0.7878 0.7312
5-64 0.6614 0.0111 0.6790 0.6421
5-128 0.7359 0.0138 0.7582 0.7182
5-256 0.7601 0.0195 0.7854 0.7272
5-512 0.7584 0.0168 0.7817 0.7366
6-64 0.6701 0.0126 0.6916 0.6464
6-128 0.7201 0.0168 0.7491 0.6948
6-256 0.7493 0.0161 0.7749 0.7200
6-512 0.7281 0.0233 0.7548 0.6792

Table 3: The Prediction Accuracy of the Surgery Duration
Prediction System in the Training Dataset

Layers-
Neurons

Mean Std Max Min

3-64 0.6614 0.0140 0.6758 0.6308
3-128 0.7507 0.0160 0.7656 0.7117
3-256 0.7996 0.0135 0.8233 0.7797
3-512 0.7996 0.0117 0.8179 0.7836
4-64 0.7180 0.0090 0.7305 0.7053
4-128 0.8084 0.0087 0.8269 0.7955
4-256 0.8468 0.0118 0.8675 0.8303
4-512 0.8402 0.0186 0.8681 0.8049
5-64 0.7335 0.0108 0.7481 0.7139
5-128 0.8116 0.0129 0.8331 0.7950
5-256 0.8386 0.0189 0.8608 0.8059
5-512 0.8365 0.0154 0.8569 0.8140
6-64 0.7424 0.0158 0.7656 0.7110
6-128 0.7960 0.0173 0.8269 0.7717
6-256 0.8297 0.0161 0.8605 0.7994
6-512 0.8046 0.0234 0.8345 0.7588

6, we notice that the 3-512 architecture has a longer running time
(1806.50 s) than the 3-256 architecture (584.24 s). In other words,
among three hidden layer architecture, the 3-256 architecture saves
67.66% of the runtime cost compared with the 3-512 architecture.
Therefore, in three hidden layer architectures, we settle for the
3-256 architecture prediction model.

In 4, 5, and 6 hidden layer architectures, in Table 2, we note that
the 4-256, 5-256, and 6-256 architectures have the maximum aver-
age prediction accuracies (0.7711, 0.7601, and 0.7493, respectively)
in the testing dataset. Besides, in Table 3 and 4, we note that the

Table 4: The Prediction Accuracy of the Surgery Duration
Prediction System in the Validation Dataset

Layers-
Neurons

Mean Std Max Min

3-64 0.6033 0.0105 0.6171 0.5789
3-128 0.6863 0.0122 0.7010 0.6567
3-256 0.7266 0.0160 0.7556 0.7098
3-512 0.7261 0.0117 0.7401 0.7093
4-64 0.6536 0.0115 0.6729 0.6323
4-128 0.7349 0.0087 0.7564 0.7254
4-256 0.7714 0.0124 0.7918 0.7564
4-512 0.7656 0.0161 0.7877 0.7352
5-64 0.6624 0.0100 0.6771 0.6468
5-128 0.7329 0.0123 0.7471 0.7165
5-256 0.7636 0.0182 0.7885 0.7347
5-512 0.7559 0.0149 0.7848 0.7376
6-64 0.6680 0.0144 0.6863 0.6368
6-128 0.7201 0.0158 0.7533 0.7033
6-256 0.7499 0.0165 0.7740 0.7163
6-512 0.7271 0.0204 0.7574 0.6858

4-256, 5-256, and 6-256 architectures also have the maximum aver-
age prediction accuracies in the training and validation datasets. In
other words, too many or too few artificial neurons would reduce
the prediction accuracy. Therefore, in 4, 5, and 6 hidden layer ar-
chitectures, we settle for the 4-256, 5-256 and 6-256 architecture
prediction models.

In all architectures, in Table 2-4, the experimental results provide
two findings that are worth noting. First, in general, the predic-
tion system with fewer artificial neurons (such as 3-64) could has
the lower standard deviation (Std). In other words, the prediction
system with fewer artificial neurons has a better robustness. How-
ever, the prediction system with fewer artificial neurons has a poor
prediction accuracy. In this study, we would like to construct a
more accurate surgery duration prediction system. Therefore, the
prediction accuracy of the prediction system is more important
than its robustness, and then we determine the optimal architecture
of the prediction system based on the prediction accuracy rather
than the robustness.

Second, the 4-256 architecture has the maximum average predic-
tion accuracies (0.7711, 0.8468, and 0.7714) in the testing, training,
and validation datasets, respectively. In Table 5, the 4-256 architec-
ture is significantly better than the 3-256 and 6-256 architectures,
but not significantly better than the 5-256 architecture. However,
the p-value (0.0710) is quite close to 0.05. In other words, the 4-256

Table 5: The T-Test of Each Architecture

Architecture 4-256 5-256 6-256
3-256 0.0000* 0.0001* 0.0009*
4-256 — 0.0710 0.0013*
5-256 — — 0.0979
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Table 6: The Running Time Cost of Each Architecture

Architecture Time(s) Architecture Time(s)
3-64 339.72 4-64 375.72
3-128 404.73 4-128 474.83
3-256 584.24 4-256 756.63
3-512 1806.50 4-512 2480.10
5-64 404.15 6-64 448.18
5-128 560.63 6-128 622.16
5-256 923.48 6-256 1072.77
5-512 3325.30 6-512 4155.28

Table 7: The Effect of Dropout Mechanism on the 4-256 Ar-
chitecture

dropout Testing Dataset Training
Dataset

Validation
Dataset

Mean Std Mean Std Mean Std
Without 0.7711 0.0115 0.8468 0.0118 0.7714 0.0124
0.1 0.7287 0.0115 0.8112 0.0120 0.7298 0.0122
0.2 0.6562 0.0058 0.7263 0.0056 0.6558 0.0048
0.3 0.5930 0.0085 0.6471 0.0096 0.5930 0.0087

architecture is almost significantly better than the 5-256 archi-
tecture. The 4-256 architecture saves 18.07% of the runtime cost
compared with the 5-256 architecture. Therefore, we determined
that the final architecture of the surgery duration prediction system
is the 4-256 architecture.

After we determined the best architecture of the surgery dura-
tion prediction model, we further improved the prediction accuracy
through dropout mechanism, data enrichment, and longer train-
ing time. The experimental results are shown in Tables 7 and 8.
Table 7 presents the effect of dropout mechanism, and Table 8
presents the impact of the data enrichment and the longer training
time on the 4-256 architecture, respectively. In Table 7, we note
that the 4-256 architecture without the dropout mechanism has
the maximum average prediction accuracy (0.7711) in the testing
dataset. With the increase in the dropout probability, the average
prediction accuracy decreases. In other words, the dropout mech-
anism could not improve the prediction accuracy of the surgery
duration prediction model. We enriched the data 10 times, and in
Table 8, the 4-256 architecture with 10 times data had a better av-
erage prediction accuracy (0.8788) in the testing dataset. We also
increased the training time to 1,000 epochs, and we identified that

the average prediction accuracy increased to 0.9485 in the testing
dataset. Data enrichment and longer training time improved the
surgery duration prediction model. Finally, the architecture of the
surgery duration prediction models was the 4-256 architecture with-
out dropout mechanism, trained with 10 times the data over 1,000
epochs.

5 CONCLUSIONS AND FUTURE RESEARCH
In this paper, we used the MLP model to construct the surgery du-
ration prediction model. We identified the main attributes affecting
the prediction of surgery duration based on the available patient
data and performed the corresponding data preprocessing. Exten-
sive experiments and comparisons were carried out to determine
the final architecture of the prediction model. The experimental re-
sults provide several findings that are worth noting. First, based on
the prediction accuracy and the running time, the final architecture
of the surgery duration prediction model was the 4-256 architecture.
The smaller the architecture, the lower the accuracy. Conversely,
the larger the architecture, the longer the running time. Second,
overtraining did not occur; therefore, the dropout mechanism could
not improve the prediction accuracy of these two prediction models.
However, data augmentation and longer learning period improved
the prediction models.

It is worth noting that the duration of surgery and anesthesia
emergence constitute the operating room duration. As we men-
tioned in Section 1, operating room managers generally predict the
duration of the surgery and the anesthesia emergence manually
based on the average duration of previous similar procedures (prior
experience) or a rough estimate of operating room time based on
the type of surgery, characteristics, and so on. However, this pre-
diction approach is a relatively rough and unscientific estimation.
Therefore, we suggest that, in the future, we could use the MLP
model to construct the anesthesia emergence duration prediction
model. Besides, we still have many variables that have not been
considered in this study, such as the data of before surgery physical
examination. Therefore, we suggest that, in the future, depending
on the organs that are subject of surgery, we could use specific
physical examination items to predict the surgery duration and
the anesthesia emergence duration and obtain a more accurate
prediction system.
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Table 8: The Impact of the Data Enrichment and the Longer Training Time on the 4-256 Architecture

Multiple Epochs Testing Dataset Training Dataset Validation Dataset
Mean Std Mean Std Mean Std

3 200 0.7711 0.0115 0.8468 0.0118 0.7714 0.0124
10 200 0.8788 0.0134 0.8920 0.0128 0.8738 0.0138
10 1000 0.9485 0.0055 0.9530 0.0046 0.9473 0.0059
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